Queue for waiting
processes that hav
signalled others

Entry queue for processes
trying to enter the monitg
for the first time

Process blocked
on a condition

Two queues
for blocked
processes

Process executing in the monito|

Figure 4:

When the program is running, each new process
appears on the diagram as a numbered, coloured circle.
The circle's number corresponds to the process's
number and different colours are used to visually
differentiate each of the processes. For a given
process, the circle appears in the icon representing the
module or subroutine where the process is currently
executing. If many circles appear inside an icon then a
high degree of parallelism is being achieved in that
area.

Processes entering a monitor must queue since only
one is allowed inside at a time. Figure 4 shows where
the circles are positioned depending on their status.
The one process currently executing in the monitor
appears inside the icon while the processes waiting to
enter the monitor for the first time appear on top of
the icon at the point of the incoming arrow. If a
process running in the monitor is blocked on a
condition then it must move outside the monitor to a
condition queue and wait to be signalled by another
process. The condition queue appear along the sides of
the monitor icon with a separate queue for each
condition. When one process signals another that bis
blocked, the signalling process immediately leaves the
monitor, thus allowing the blocked process to run.
The signaller waits temporarily in a queue at the top
left corner of the icon.

The source-based view is useful for showing problems
with recursion and process synchronization since the
state of each process is visible at all times. A process
in infinite recursion will appear to continuously re-
enter a subroutine, while a poorly synchronized
algorithm will have many processes queueing at a

Processes Queuing Around a Monitor

monitor and a low degree of parallelism. Table 1
summarizes some ways in which the views in this
framework may be used to analyze concurrent program
behaviour.

The process-based view uses a notation consistent with
the source view: the static representation of a process
is a large, numbered, coloured circle. Each large circle
in the process-based view corresponds to one of the
animated circles in the source view and the same
colour is used for quick visual identification. A circle
appears when a new process is forked and remains
visible for the life of the process. The large process
circle may be moved to any position on the screen that
the user desires, or it may be collapsed into an icon if
it is not of interest. Figure 5 shows the process view
positioned for the Dining Philosophers Problem to
reflect the circular arrangement of philosophers.

When the program runs, the process-based view
indicates the state of each process and its position in
the code. The state of each process is expressed by its
border, with a solid border showing that the process is
running on a CPU, while an idle process will have a
discontinuous border. In Figure 5, processes 2 and 4
are using CPU while processes 1, 3, and 5 are not.
The thickness of the border indicates the process's
software state: processes ready to run have a thin
border, medium borders show a process that is waiting,
and blocked processes use a thick border. The latter
two states do not require a CPU so they are likely to
appear as discontinuous lines. Line thickness and
continuity were chosen to represent these items
because they easily catch the eye and draw attention to
blocked and CPU-starved processes.

“The Automatic Animation of Concurrent Programs” by Price and Baecker Page 6

Activity / Views
Problem Source-Based Process-Based Hardware-Based
Deep process remains in the |call stack grows very high CPU usage
Recursion |same place; upon close |large, but eventually
inspection it appears to | peaks and begins
re-enter the same shrinking
procedure repeatedly
Infinite process remains in the |call stack grows high CPU usage
Recursion |same place; upon close | without bound
inspection it appears to
re-enter the same
procedure repeatedly
Infinite a group of processes a cyclic pattern of
Chatter move in a cyclic process/processor
pattern without making communication
any progress
Deadlock processes appear all processes are CPUs are idle
motionless, waiting on | blocked (have thick
conditions outside borders); no process
monitors can_signal them
Starvation |one or more processes [certain processes never | certain processes never
remains motionless, unblock (always have use CPU
blocked on a condition | thick border)
Slow process remains processes remain in a particular process
Device motionless in a same state or take a uses a device
Access particular area long time to change excessively
state
Long a process remains the process continues
Comput- motionless in an area; to use CPU
ation close inspection shows
that it is simply
- executing a lot of code
Poor processes spend a lot of|lots of processes in low CPU usage
Synchron- time in a monitor; wait state (medium
ization many processes are thick border)
trying to get in

Table 1: Activities and Problems Indicated by Views

Figure 6 shows two processes from the Dining
Philosophers Program. Process 2 on the left is
running on a CPU since it has a thin, solid border.
The names of the module and procedure where it is
currently executing are shown at the top and bottom of
the circle while the left side shows a diamond shaped
icon indicating the CPU where the process is running.
The icon at the right of the circle shows the current
number of levels of subroutine nesting for the process.
Process 3 on the right has a thick discontinuous border
which quickly identifies it as a blocked process that is
not using a CPU. The additional box at the bottom of
the circle gives the name of the condition that it is
blocked on.

“The Automatic Animation of Concurrent Programs” by Price and Baecker

User Testing

A common complaint about PV systems is that they
are simply toys and that they are not useful outside the
limited domain of novice to intermediate computer
science instruction. ‘“Proving” the usefulness of a PV
system as a software engineering tool, however, is a
difficult task. The scientific method states that the
only way to prove a hypothesis is to test it through
reproducible experiments, yet few authors have checked
their systems with formal user testing experiments.
One reason for this is the lack of good experimental
methodology in the field of software psychology,
which has been described as “an unholy mixture of
mathematics, literary criticism, and folklore” [Sheil
1981].

Page 7

Figure 5:

Source-Based and Process-Based Views Positioned By User

(Dining Philosophers Problem)

We performed a user testing experiment using Paradocs
to determine if it aided in software comprehension for a
large modular program. We chose a debugging task to
test program comprehension (since one must usually
understand a program in order to debug it). Based on
experience with pilot subjects and advice from experts,
we inserted a bug in a large (7500 lines in 12 modules)
operating system simulator called Mini Tunis. We
used a between-subjects strategy: one group attempted
to find the bug using conventional methods while the
second group used Paradocs.

The subject pool consisted of graduate and senior
undergraduate students taking a computer science
course on operating systems. All of the students had
been working with Mini Tunis for six weeks while
doing course assignments. A total of 20 volunteers
from the class were randomly assigned to two groups:
the control group (using conventional tools) and the
Paradocs group. Each group had identical preparation
for the experiment, including a familiarization session
with Paradocs.

“The Automatic Animation of Concurrent Programs” by Price and Baecker Page 8

module:
Eat
pgocedure
Rice

1

\
S
S
o~
=
%

%

Figure 6: Two Processes in

Both groups began using conventional debugging
tools to solve the problem, but at the fifteen minute
mark the Paradocs group was allowed to use Paradocs
to continue debugging. Subjects from either group
who did not find the bug after forty-five minutes were
stopped and they were recorded as not finding the bug.

The initial fifteen minute period was designed to catch
high-ability subjects who could find the bug with or
without software aids. Two subjects (one from each
group) found the bug before the fifteen minute mark,
and their results were not counted further. Of the
remaining nine subjects in each group, the raw
numerical results for both groups were identical: five
subjects found the bug within forty-five minutes and
four subjects did not find the bug (the mean and
medium times to completion were also identical).

The apparently neutral results only represent a portion

itor
I(n,’(;zrzrps(;wks ,’
o
-
-
3 Nested | =l
2 L]

procedure:

-~
BeginEating e
O
ITTT |\\\‘

Process-Based View

of the data, however. All of the sessions were
videotaped and the subjects were asked to “think aloud”
as they worked. A basic analysis of the videotape
revealed that some of the subjects who ran out of time
were “close” to finding the bug: those in the control
group were examining the routine containing the bug
while those in the Paradocs group were replaying the
animation at the point where the bug was occurring.
The verbal protocol from these subjects revealed that
they understood the cause of the problem and would
likely have found the bug.

The remainder of the subjects who ran out of time
were clearly “lost” and had little hope of finding the
bug. The verbal protocol analysis indicated that they
had little idea as to the cause of the bug and the
videotape indicated that they were looking in the
wrong area of the program. Table 2 shows the
numerical results for those who found the bug, were

Control Paradocs
Solved 5 5
“Close” 1 3
“Lost” 3 1
Table 2: Numerical User Testing Results

“The Automatic Animation of Concurrent Programs” by Price and

Baecker Page 9

“close,” or were “lost.”

Further analysis of the videotape revealed that subjects
in the Paradocs group had more insights into the cause
of the bug and made more leaps of understanding than
those in the control group. Paradocs subjects had a
great deal more confidence in their verbal assertions
whereas control subjects tended to guess at conjectures
without any evidence. Paradocs subjects also made
extensive use of the “replay” feature to narrow down
the location of the bug, as shown by the following
excerpt from the transcript of a session:

Oh, something interesting
here. —indicates process being
signalled—rewinds animation and
replays the sequence again
slowly— That’s not supposed
to happen! The init
process already signalled
another envelope to come

in, so the bug is somewhere
here.. —indicates subroutine
where bug has been inserted

Many Paradocs subjects also spent a lot of time
staring at the animation in an almost mesmerized
state. This was probably due to their lack of
familiarity with the system and it likely contributed to
their debugging time.

Conclusions

We have argued that the capabilities of modern
workstation technology far exceed the degree to which
they are exploited by program visualization interface
designers. = We have also asserted the need for
automatic concurrent program visualization systems as
software engineering tools. By building a prototype
system based on a systematic framework and
performing user testing experiments, we have
illustrated that program visualization can benefit from
an organized rather than an ad hoc approach. Despite
the serious problems with methodology, it is
important for PV system designers to scrutinize their
work through experiments, even if the results are only
qualitative.

Researchers developing concurrent PV systems must
be careful to use benign methods in sensitive systems
and address the issues of different architectures and
paradigms. While scrolling and zooming techniques
may work well in simple documents, automatic PV
systems must provide tools for effective navigation
through the enormous information spaces of large
software projects. Despite these research issues, our
work suggests that the effective use of graphic design
principles, colour, and audio will lead to concise and

“The Automatic Animation of Concurrent Programs” by Price and Baecker

expressive notations for communicating about
complex computer programs.

Acknowledgments

We are indebted to Abigail Sellen for her advice on the
design of user testing experiments. We also wish to
thank the Natural Sciences and Engineering Research
Council of Canada, the Information Technology
Research Centre of the Province of Ontario, and Apple
Computer, Inc. for their support.

References

[Baecker 1981] Baecker, Ronald M. Sorting Out
Sorting. Dynamic Graphics Project,
Computer Systems Research Institute,
University of Toronto. 16 mm colour
sound film, 25 minutes, presented at
ACM SIGGRAPH '81. 1981.

[Baecker and Marcus 1990] Baecker, Ronald M.,

and Aaron Marcus. Human Factors and

Typography for More Readable
Programs. Reading, MA: Addison-
Wesley, 1990.

[Brooks 1987] Brooks, Fred P. “No Silver Bullet:

Essence and Accidents of Software

Engineering.” IEEE Computer 20(4):
10-19, 1987.

[Brown 1988] Brown, Marc H. Algorithm Animation.
ACM Distinguished Dissertations.
Cambridge, MA: MIT Press, 1988.

[Brown 1988] Brown, Marc H. “Perspectives on
Algorithm Animation.” In Proceedings
of CHI '88 Human Factors
Computing Systems, pages 33-38,
Washington, D.C., May 15-19, 1988.

[Delisle and Schwartz 1986]
Mayer Schwartz. “A Programming
Environment for CSP.” In Proceedings
of ACM SIGSOFT/SIGPLAN Software
Engineering Symposium on Practical
Software Development Environments,
pages 34-41, Palo Alto, CA, December

9-11, 1986, Published In ACM

SIGPLAN Notices 22(1), January
1987.

[Dijkstra 1965] Dijkstra, E-W. “Cooperating Sequential
Processes.” Technical Report EWD-
123, Technological University,
Eindhoven, The Netherlands. 1965.

Page 10

Delisle, Norman, and

[Eisenstadt and Brayshaw 1987] Eisenstadt, Marc, and
Mike Brayshaw. “The Transparent
Prolog Machine.” Technical Report
21la, Human Cognition Research
Laboratory, Open University, Milton

Keynes, England. 1987.

[Gaver and Smith 1990] Gaver, William W., and
Randall B. Smith. “Auditory Icons in
Large-Scale Collaborative
Environments.” In Proceedings of
Human Computer Interaction — Interact
'90, pages 735-740, Cambridge, U.K.,
August 27-31, 1990.

[Haibt 1959] Haibt, Lois M. “A Program to Draw

Multi-Level Flow Charts.” In

Proceedings of The Western Joint

Computer Conference, pages 131-137,

San Francisco, CA, March 3-5, 1959.

[Hoare 1978] Hoare, C. A. R. “Communicating

Sequential Processes.”

Communications of the ACM 21(8):

666-677, August, 1978.

[Hoare 1974] Hoare, C.A.R. “Monitors: An

Operating System Structuring Concept.”

Communications of the ACM 17(10):

549-557, October, 1974.

[Holt and Cordy 1988] Holt, Ric C., and James R.
Cordy. “The Turing Programming
Language.” Communications of the
ACM 31(12): 1410-1423, December,
1988.

[Isoda et al. 1987] Isoda, Sadahiro et al. “VIPS:
A Visual Debugger.” IEEE Software
4(3): 8-19, May, 1987.

[Knowlton 1966] Knowlton, Kenneth C. LO:
Bell Telephone Laboratories Low-Level
Linked List Language. Technical
Information Laboratories, Bell
Laboratories, Inc. 16 mm black and
white sound film, 16 minutes. 1966.
[Myers 1990] Myers, Brad A. “Taxonomies of Visual
Programming and Program
Visualization.” Journal of Visual
Languages and Computing 1(1): 97-
123, March, 1990.

“The Automatic Animation of Concurrent Programs” by Price and Baecker

[Myers 1986] Myers, Brad A. “Visual Programming,
Programming by Example, and Program
Visualization: A Taxonomy.” In
Proceedings of CHI '86 Human Factors
in Computing Systems, pages 59-66,
Boston, MA, April 13-17, 1986.

[Myers et al. 1988] Myers, Brad A. et al.
“Automatic Data Visualization for
Novice Pascal Programmers.” In
Proceedings of The IEEE Workshop on
Visual Languages, pages 192-198, The
University of Pittsburgh, Pennsylvania,
October 10-12, 1988.

[Reiss 1985] Reiss, Steven P. “Pecan: Program

Development Systems that Support

Multiple Views.” IEEE Transactions on

Software Engineering 11(3): 276-285,

March, 1985.

[Scheifler and Gettys 1986] Scheifler, R.W., and
J. Gettys. “The X Window System”.
ACM Transactions on Graphics 5(2):
79-109, April, 1986.

[Sheil 1981] Sheil, B.A. “The Psychological Study

of Programming.” ACM Computing

Surveys 13(1): 101-120, 1981.

[Socha et al. 1989] Socha, David et al. “Voyeur:
Graphical Views of Parallel Programs.”
ACM SIGPLAN Notices 24(1): 206-
215, January, 1989.

[Tufte 1990] Tufte, Edward Rolf. Envisioning

Information. Cheshire, CT: Graphics

Press, 1990.

[Zimmermann et al. 1988] Zimmermann, M. et
al. “Understanding Concurrent
Programming through Program
Animation.” In Proceedings of The
Nineteenth ACM SIGCSE Technical
Symposium on Computer Science
Education, pages 27-35, Atlanta, GA,
1988, Published In ACM SIGCSE
Bulletin 20(1), February 1988.

Page 11

